Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Tome IV. Birmingham: Kynoch Press. (Distributeur actuel Kluwer Academic Publishers, Dordrecht.)
Delage, C., H'Naïfi, A. \& Goursolle, M. (1986). C.R. Acad. Sci. Sér II, 303, 1645-1650.
Delage, C., H'Naïfi, A., Goursolle, M. \& Carpy, A. (1986). C.R. Acad. Sci. Sér II, 302, 219-222.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. de York, Angleterre, et de Louvain, Belgique.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Structure of syn-1-tert-Butyl-4-(4-tert-butylcyclohexylidene)cyclohexane

By R. Mariezcurrena*
Laboratorio de Cristalografía, Facultad de Quimica, Gral. Flores 2124, Montevideo, Uruguay

and L. Fornaro
Cátedra de Física, Facultad de Quimica, Gral. Flores 2124, Montevideo, Uruguay

(Received 9 December 1987; accepted 24 June 1988)

Abstract

C}_{20} \mathrm{H}_{36}, \quad M_{r}=276 \cdot 3\), triclinic, $P \overline{1}, \quad a=$ 6.212 (3), $\quad b=11.39$ (4),$\quad c=15.17$ (3) $\AA, \quad \alpha=$ $117.5(8), \quad \beta=72.56(2), \quad \gamma=102.2(6)^{\circ}, \quad V=$ 905 (8) $\AA^{3}, \quad Z=2, \quad D_{x}=1.23 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Мо $K \alpha, \quad \lambda=$ $0.71069 \AA, \quad \mu=0.276 \mathrm{~mm}^{-1}, \quad F(000)=312, \quad T=$ $294 \mathrm{~K}, R=0.044$ for 1534 reflections. The two cyclohexane rings adopt differently distorted chair conformations. All bond distances and angles within the molecule are normal. The crystal packing is mainly stabilized by van der Waals forces.

Introduction. An X-ray structural investigation of the title compound has been carried out in order to elucidate the influence of the tert-butyl groups on the geometry of the bicyclohexylidene. The structure of the present compound is of interest because it forms part of the mechanism studies of 'ene' reactions of alkenes with singlet oxygen (Asveld \& Kellogg, 1982).

Experimental. Preliminary precession and Weissenberg photographs of colorless acicular crystals, $0.15 \times$ $0.30 \times 0.40 \mathrm{~mm}$, indicate crystals to be triclinic, $P \overline{\mathrm{I}}$. Lattice constants were determined from the photographic data and confirmed by diffractometer measurements. A Picker computer-controlled four-circle diffractometer with graphite monochromator ($\lambda=$ $0.71096 \AA$) was used for measurements of unit-cell constants and for data collection. Scan parameters: $\theta-2 \theta$ scan, scan width $(1.0+0.692 \tan \theta)^{\circ}$, background estimated by stationary counting at $\pm 0.8^{\circ} 2 \theta$ from the peak maxima; speed $1^{\circ} \mathrm{min}^{-1} ; h 0$ to $\overline{6}, k-12$

[^0]0108-2701/88/122189-03\$03.00
to $11, l-15$ to 16 ; no significant variation of three standard reflections; Lorentz and polarization corrections; neutral-atom scattering factors taken from International Tables for X-ray Crystallography (1974).
The structure was solved by direct methods, mULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) with considerable difficulty. The E maps obtained from the better sets did not reveal atom positions with chemical sense. One set exhibited 'double peaks' in almost all positions. All these 'double peaks' had equal shifts with a vector $\Delta s=0.077 \mathrm{a}+$ $0.038 \mathbf{b}+0.040 \mathbf{c}$. This vector was used to locate most of the C -atom positions. Subsequent $\Delta \rho$ maps completed the structure. Full-matrix least-squares refinement on $|F|$ with SHELX76 (Sheldrick, 1976) with C atoms anisotropic and an isotropic thermal parameter for H atoms converged to $R=0.044, w R=0.048$ for 1650 observed reflections $[I>3 \sigma(I)]$ and 326 parameters. Max. Δ / σ in last least-squares cycle <0.002. Min. and max. $\Delta \rho-0.10$ and $+0.12 \mathrm{e}^{-3} \AA^{-3}$.

Discussion. Final atomic parameters for non-H atoms are given in Table $1 . \dagger$ The structure of the molecule is shown in Fig. 1. The bond lengths and angles are listed in Table 2. The molecule consists of two tert-butylsubstituted cyclohexane rings, linked by a double bond. The cyclohexane rings show the chair conformation.

[^1]Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors for non- H atoms with e.s.d.'s in parentheses

Table 2. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$

C1-C2	1.512 (3)	C1-C11	1.339 (3)
C2-C3	1.523 (3)	C11-C12	1.500 (3)
C3-C4	1.528 (3)	C12-C13	1.527 (3)
C4-C5	1.525 (3)	C13-C14	1.528 (3)
C5-C6	1.521 (3)	C14-C15	1.526 (3)
C6-C1	1.512 (3)	C15-C16	1.526 (3)
C4-C7	1.543 (3)	C16-C11	1.508 (3)
C7-C8	1.531 (3)	C14-C17	1.552 (3)
C7-C9	1.523 (4)	C17-C18	1.516 (4)
C7-C10	1.526 (3)	C17-C19	1.537 (3)
		C17-C20	1.522 (4)
C1-C2-C3	114.0 (2)	C11-C12-C13	112.1 (2)
C2-C3-C4	112.4 (2)	C12-C13-C14	112.3 (2)
C3-C4-C5	$106 \cdot 5$ (2)	C13-C14-C15	108.7 (2)
C4-C5-C6	112.8 (2)	C14-C15-C16	112.6 (2)
C5-C6-C1	114.6 (2)	C15-C16-C11	111.5 (2)
C6-C1-C2	112.8 (2)	C16-C11-C12	110.0 (2)
C3-C4-C7	115.8 (2)	C13-C14-C17	113.8 (2)
C5-C4-C7	114.9 (2)	C15-C14-C17	114.7 (2)
C4-C7-C8	109.6 (2)	C14-C17-C18	109.9 (2)
C4-C7-C9	112.3 (2)	C14-C17-C19	109.4 (2)
C4-C7-C10	109.4 (2)	C14-C17-C20	111.9 (2)
C8-C7-C9	109.2 (3)	C18-C17-C19	107.7 (2)
C8-C7-C10	$107 \cdot 3$ (2)	C18-C17-C20	109.1 (3)
C9-C7-C10	108.9 (3)	C19-C17-C20	108.8 (3)
C2-C1-C11	123.3 (2)	C12-C11-C1	125.1 (2)
C6-C1-C11	123.5 (2)	C16-C11-C1	124.9 (2)

Fig. 1. Atomic numbering and molecular structure of the title compound.

Unexpectedly, it was found that the present compound exhibits a positioning of the two rings that differs from that of the bicyclohexylidene (Sasvári \& Löw, 1965), and confirms one of the conformations suggested by Asveld \& Kellogg.

The center of symmetry of the molecule of bicyclohexylidene is absent in the present compound and the two rings are distorted differently. From crystallographic data reported by Sasvári \& Löw, asymmetry parameters (Duax \& Norton, 1975) were calculated. The same was done for the two rings of the present compound.

The Duax \& Norton mirror-plane asymmetry parameters $\Delta C_{s}(2), \Delta C_{s}(3), \Delta C_{s}(12)$ and $\Delta C_{s}(13)$ have values of $11.7(6), 10.6(6), 1.8(5)$ and $1.8(5)$, respectively. These are greater than those for bicyclohexylidene: $1.0(5)$ and $1.3(5)$ and show the influence of the tert-butyl group on the conformation of the cyclohexane. Apart from this influence, the packing of the molecules affects the two rings differently. The C1-C6 ring is the more distorted, as is shown by the previously given parameters and by the twofold asymmetry parameters $\Delta C_{2}(2-3)$ and $\Delta C_{2}(3-4)$ that have values of 15.6 (6) and $6.9(6)$ greater than the pair 1.9 (6) and 1.6 (5) for the C11-C16 ring, and 1.5 (6) and 1.4 (5) for the bicyclohexylidene ring.

To confirm the deviation from the predicted $C_{2 v}$ symmetry (Kellogg \& Kaiser, 1975), two different molecules were generated through a mirror plane perpendicular to the double bond with C1-C6 and C11-C16 ring conformations, respectively. Both models yielded, as expected, R factors as high as 0.50 and distances from atoms of different molecules shorter than van der Waals values. The most remarkable short distances are between H atoms of $\mathrm{C} 9-\mathrm{C} 19$ and $\mathrm{C} 18-\mathrm{C} 19$ in the first case and H atoms of $\mathrm{C} 8-\mathrm{C} 13$ and C9-C18 in the second. The C atoms mentioned are shown in Fig. 2, in their actual positions. The packing effect results in a displacement of the C7 tert-butyl group towards the mirror plane perpendicular to the double bond and a displacement of the C17 tert-butyl group away from it. Both displacements distort the chair conformation and twist mainly the

Fig. 2. Stereoscopic diagram of the packing of the molecules in the crystal structure.
chair $\mathrm{C} 1-\mathrm{C} 6$. As a result the tert-butyl groups occupy positions intermediate between equatorial and axial.

The shortest intermolecular $\mathrm{H}-\mathrm{H}$ distance is $2.36 \AA$, in agreement with the hydrogen van del Waals diameter of $2.34 \AA$. The double-bond length of 1.339 (3) \AA is equal to that reported by Sasvári \& Löw.

The molecules are held together by van der Waals interactions.

The authors thank Professor Svend Rasmussen, Department of Inorganic Chemistry, University of Aarhus, for the use of the diffractometer, Professor Rita Hazell for helpful discussions and I.Q. Rodolfo Valentin for writing the program for molecular-geometry calculation and plotting.

References

Asveld, W. H. \& Kellogg, R. M. (1982). J. Org. Chem. 47, 1250-1257.
Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure. New York: IFI/Plenum Data Company.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Kellogg, R. M. \& Kaiser, J. K. (1975). J. Org. Chem. 40, No. 17, 2575.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Sasvíri, K. \& Löw, M. (1965). Acta Cryst. 19, 840.
Sheldrick, J. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Structure of Hexacyclo[7.4.2.0 $\left.{ }^{1,9} .0^{3,7} \cdot 0^{4,14} \cdot 0^{6,15}\right]$ pentadeca-10,12-diene-2,8-dione*

By N. N. Dhaneshwar, S. S. Tavale and T. N. Guru Row \dagger Physical and Structural Chemistry Unit, National Chemical Laboratory, Pune 411 008, India
and U. R. Zope, B. Pandey and N. R. Ayyangar
Organic Chemistry Division, National Chemical Laboratory, Pune 411 008, India

(Received 23 May 1988; accepted 25 July 1988)

Abstract

C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}, M_{r}=224.25\), monoclinic, $P 2_{1} / n$, $a=7.192$ (1),$b=10.821$ (1), $c=14.093$ (2) $\AA, \beta=$ 97.48 (1) ${ }^{\circ}, V=1087.5$ (2) $\AA^{3}, Z=4, D_{m}=1.34$ (1), $D_{x}=1.36(1) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \quad \mu=$ $0.729 \mathrm{~mm}^{-1}, \quad F(000)=472, \quad T=293 \mathrm{~K}, \quad R=0.055$ ($w R=0.056$) for 1323 observed reflections. The carbon skeleton consists of four 'envelope' fivemembered rings, one planar four-membered ring and two six-membered rings. The diene ring is planar while the dione-bearing ring has a boat conformation.

Introduction. The transformation of aromatics to cycloalkanes via strained polycyclic systems is increasingly becoming a standard synthetic protocol towards complex organic natural products (Wender, 1983; Solott \& Gilbert, 1980; Eaton, Ravi Shanker, Price, Pluth, Gilbert, Alster \& Sandus, 1984). The nature of bonding in the cyclobutane-ring framework of polycyclic systems of cubane and homocubane is also of interest. With a view to examine whether $[2+2]$ ortho addition or [3+2]-meta addition (Mehta,

* NCL Communication No. 4427.
\dagger To whom all correspondence is to be addressed.
0108-2701/88/122191-03\$03.00

Murthy, Reddy \& Reddy, 1986; Bryce-Smith \& Gilbert, 1976) is operative in an intramolecular benzene olefin photoaddition, the major Diels-Alder isomer of cyclopentadiene and 1,4-naphthoquinone was irradiated at 254 nm and crystals were obtained by repeated slow crystallization from a $3: 1$ mixture of petroleum ether and benzene. The X-ray structure was essential for stereoselective synthetic manipulations of the diene functionality.

Experimental. Crystal $\sim 0.1 \times 0.25 \times 0.8 \mathrm{~mm}, D_{m}$ by

 flotation in aqueous KI, Nonius CAD-4F-11M diffractometer, $\mathrm{Cu} K \alpha$ radiation, $\omega / 2 \theta$ scan mode, scan speed $1^{\circ} \min ^{-1}, \quad \theta \leq 60^{\circ}, \quad 0 \leq h \leq 8, \quad 0 \leq k \leq 12$, $-15 \leq l \leq 15,1708$ reflections collected, 1323 judged significant $\left[\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)\right]$, lattice parameters from 25 reflections ($16.5 \leq 2 \theta \leq 51.8^{\circ}$), three standard reflections ($501,22 \overline{8}$ and 244) every $2000 \mathrm{~s}, 4 \%$ variation in intensity. No correction for absorption. Structure solved by direct methods using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978). Full-matrix least-squares refinement (on F) of scale factor, positional and anisotropic thermal parameters for H atoms, initial H positions© 1988 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51187 (14 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 © 1988 International Union of Crystallography

